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Abstract—The problem of impact 15 of considerable interest in laminuted composite materials,
Although important contnbutions have been made in understanding the impact problem through
numerical selutions. an analytical solution has not been uvailable for the problem of impact of
{aminated plates. The present work gives an analytical solution te this problem. based on the usual
Fourier series expansion for simply-supported plates, combined with Laplace transform techniques
for the impact problem solution.

INTRODUCTION

The analysis of laminated composite plates subject to impact loads has been of much
interest in recent years, because of the seasitivity of advanced composite materials to impact
damage. Despite considerable progress in the analysis of laminated orthotropic plates under
dynamic loads, an analytical solution to the impact problem is not available tn the literature.
Previous investigators have presented analytical solutions for the response of composite
plates under time dependent loads, and numerical solutions for the problem of impact of
composite plates by cither rigid or clustic timpactors, Analyses are available that include the
nonlinear contact indentation at the point of impact by u foreign object as well as the
plate dynamics, but perform the time integration numerically. However, in recent work
Christoforou and Swanson (1988) have shown that it is possible to obtain an analytical
solution to the impact problem by using Laplace transform techniques, if the nonlincar
contact indentation is approximuted by a lincarized version, The present work shows how
this approach can be applicd to orthotropic liminated plates.

The analysis of static and dynamic loadings of laminated composite plates has scen
constderable development recently. Lekhnitskit (1968), Whitney and Leissa (1970) and
Jones (1975), huve presented analyses with infiniie trunsverse rigidity, while Whitney and
Pagano {1970) have presented a theory which includes trunsverse shear deformations. The
dynumic problems considered involved vibration of plates. Sun and Chattopadhyay (1975)
and Dobyns (1981) used the plate equations developed by Whitney and Pagano (1970) to
analyze u simply-supported orthotropic plate subject to center impact. Dobyns assumed
that the lateral foree history was known, while Sun and Chattopadhyay noted that in impact
by a foreign body, the force history must be computed as purt of the problem. Thus Sun
and Chattopadhyay integrated the equations of motion numerically. Birman and Bert
(1987) obtuined a closed-form solution for laminated angle-ply simply-supported plates
subject to blast loading, which again considers that the force history is known.

As mentioned above, a closed-form solution of the impuact problem has not been
obtained previously, Because the inclusion of contact deformation effects yields a nonlincar
term in the integral cquation, it is unlikely that a closed-form solution will be available for
this problem, which thus has to be solved numerically as discussed above. In the present
paper the nonlinear contact stiffness is replaced by a lincarized stiffness. to provide an
estimate of the additional compliance due to contact arca deformation cffects. Thus, bounds
can be placed on the response with the lincarized approach while still using an analytic
solution. The solution procedure is similar to that presented carlier for the impact response
of composite cylinders (Christoforou and Swanson. 1988).

In the following. the method of solution is described. Comparisons with previous
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results in the literature are given, and illustrations of the effect of vanables in the impact
problem are presented.

ANALYSIS

The plate equations of motion developed by Whitney and Pagano (1970) reduced to
specially orthotropic form (B, = 0. A4 = Az = D, = D;4 = 0), are (Dobyns, 1981)
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where D, and A, are the stiffnesses, as defined by Whitney and Pagano (1970), 4 is the
plate thickness, ¢ is time, p is material density, w is the plate displacement in the = direction
at the plate midplane, ¢ and #, are the shear rotations in the x and y directions and & is
a shear correction factor introduced by Mindlin (1951) and is popularly taken to be %/12.

Unlike the case with orthotropic shells. taking B, equal to zero decouples the plate
cquations of motion into two independent groups, of which only the group concerned with
transverse displacement is considered here.

This paper is concerned with a simply-supported rectangular plate of uniform thickness
with dimensions ¢ and b for which the boundary conditions arc given by

(l
W= /I‘ =0 atx=o0,d
X
.,
w=-»~pv'-=0 aty = o,b. (2)
dy

SOLUTION OF THE DYNAMICS PROBLEM

The solution is based on expansions of the loads, displacements and rotations in
Fourier series which satisfy the end boundary conditions of simple support. Each expression
is assumed to be separable into a function of time and a function of position. Furthermore,
following Bert and Birman (1987), by neglecting in-plane and rotary inertia the problem
becomes a second-order ordinary differential equation in time for the Fourier cocfficients
of the lateral deflection. In the case of impact, the impact force is computed from the
deceleration of the impactor mass. This involves the equilibrium equation between the
impactor and the plate during contact.

For a given dynamic load, solutions of the governing eqns (1) that satisfy the boundary
conditions, eqns (2), are given by :
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with the load function represented by

43 =Y T Oun(t) sin’-r%fsin’—l%'r. )

Equations (3) and (4) are the Fourier series representation of the rotations, lateral
displacement and load. The terms of the Fourier series representation for a uniform load
over the rectangular area u, v with center at ;, 7 as shown in Fig. 1 (needed for the contact
loading, as will be discussed subsequently) are (Dobyns. 1981)
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In the present study, following the results of Bert and Chen (1978), rotary inertia
effects are neglected. Thus, substituting eqns (3) and (4) into eqns (1) results in independent
sets of three equations for each set of modal parameters m and n:
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where the elements of the symmetric matrix C; are
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Fig. 1. [llustration of plate geometry.
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nn

C:.t =k, ( b>

C}} = /\-,4 53 ("iln>~ +k:“44 ("lj"{>’ (7)
a b

Following Bert and Birman (1987). eqns (6) can be reduced to a single differential
equation by the following transformation:

An(D) = K, W, (0 B, = Kgh, (1), (8)
where
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Transformations and substitution of cqns (5) reducce the set (6) into the following:
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are the squared tundamental frequencies of the plate, and my is its mass.
For zero initial displacement and velocity, the solution of eqn (10) is obtained using
the convolution integral ;
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The deflection of the plate at any point is given by
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IMPACT DYNAMICS

The response of a plate to impact by a foreign object may be computed from the
transicnt response, cqn (12). by computing the impact force from the deceleration of the
impactor mass. The integral equilibrium equation between the impactor and the plate
during contact is given by

fu b ) [ (1)
M 2,2.1 =l"’-m_{ ) Fio)(t—t)dr— K. (13)

where ¥y s the inttial velocity of the impactor with mass m,, w (a;2, 2. ) is the lateral
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deflection of the plate evaluated at the impact point as a function of time, F(r) is the impact
force and K is the linearized contact area stiffness.

As mentioned in the introduction, the contact problem must be linearized in order to be
treated analytically using the present approach. This involves both replacing the nonlinear
contact stiffness with an appropriate linearized value, as well as approximating the time
varying contact area by a constant area. Further discussion on these approximations is
given subsequently.

Combining eqns (12) and (13) yields:

F(t)(t—r)df—- o _ a5 Z
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(14)
Taking the Laplace Transform of eqn (14) and after some rearranging yields:
.V
F(s) = aidl , (15)
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Using the inverse theorem of the Laplace Transforms and following the same procedure
as Christoforou and Swanson (1988) yiclds:

F(r) = Z Fisinayt, (16)
1]

where w, are the response frequencies or poles of expression (15) and
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In the limiting case where the plate is very thick and the response is dominated by the
contact deformation effects, eqn (15) becomes

w?
N} = WV —.,—l—;', 18
F(s) = m, iR (18)

and eqn (16) becomes
F(t) = m, Vo, sinw.t, 19
where @] = K,/m, is the frequency associated with contact deformation effects.
The impact response can be determined by combining the Laplace transforms of eqns

(11) and (16),

P..ab Fu;
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Using the inverse theorem of the Laplace transform and the same procedure as before
yields:
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The deflection and strain at any point can then be obtained by substituting (21) into
eqns (8) and (3).

RESULTS

A problem of impact of a cross-ply laminated plate by a steel sphere is used to illustrate
the solution process. The parameters of the problem are given in Table |, and the geometry
is illustrated in Fig. |. The convergence of the present method is illustrated in Figs 2 and
3. As would be expected. it takes more terms to converge when strain is being computed,
relative to either force or displacement. The convergence in the calculation for impact force
and transverse center displacement is quite rapid. Figure 2 shows that a reasonable solution
is obtained with as few as five terms, and convergence is demonstrated with 235 terms. The
citlcutation for strain takes significantly more terms, but the difference obtained in the
results is not significant beyond 75 terms tn cach summation. and for practical purposes 50
terms could be used. It should be noted that the alternate terms in the series vanish for
center impact ; the number of terms mentioned here refers to the number of non-vanishing
terms.

The above problem has also been examined by Sun and Chen (1985), and Wu (1986).
A comparison of the computed contact force and plate center transverse displacement with

Table 1. Values used in example impact problem

Laminated plate

Simply supported

Length - width = 200 mm
Layup = [0/90,0;90;0f s
Ply thickness = 0.269 mm

Material propertics

E, o= 1412 GPa Ky =972 G
Gy, =553GPa Gyo= 374 GPa
¥ie=0.30 vey =030

p=153Kem '

Impactor

12.7 mm diameter steel sphere (8.40 gm)
Impact velocity = 3.00m s '
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Fig. 2. Convergence of solution for contact force in example impact problem.
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Fig. 3. Convergence of solution for strain behind the impact point in example impact problem.
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the solutions of Sun and Chen and Wu is shown in Figs 4 and S respectively. The comparison
shown indicates that the present method gives a reasonable match with the finite element
calculation of Sun and Chen, and also with the results given by Wu, who also used a finite
element method. In detail. the analyses are not for precisely the same problem, in that

0.4

0.3

0.2 1

Contact Force (kN)

0.1

- Present solution
- Sun and Chen (1985)
= Wu (1986)

0.0

Fig. 4. Comparison of contact force with Sun and Chen (1985) and Wu (1986).
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Fig. 5. Comparison of center displacement with Sun and Chen (1985) and Wu (1986).
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Fig. 6. Comparison with quasi-static approximation for contact force in impact by a heavy mass.

different material properties were used in the two finite element solutions used for compari-
son. The material properties used at present are essentially the same as those used by Wu
(1986). but are about 15% higher than those used by Sun and Chen (1985).

The effect of increasing the mass of the impactor is illustrated in Fig. 6, where the
calculated contact force is shown for a problem in which the impact mass has been increased
by a factor of 1000. The response depends on both the properties of the plate as well as the
impact mass, with the period of the response getting significantly longer with increasing
impact mass. In the example shown, the response can be approximated by a simple spring
mass system, with the spring corresponding to the static stiffness of the plate and the mass
that of the heavy impactor. This “quasi-static™ approximation has been used by 4 number
of investigators.

The effect of increasing the thickness of the plate is illustrated in Figs 7 and 8, where
calculated contact foree and strain behind the contact point are presented. As would be
expected, increasing the thickness of the plate lowers the period of the impact, increases the
contact force and decreases the computed strain.

DISCUSSION

The major point of the present paper is to present an analytical method for analysis
of the impact problem of orthotropic laminated plates. A solution technigque has been
presented that uses the usual Fourier scries cxpansions appropriate for simply-supported
plates, combined with Laplace transform techniques. The resulting solution gives the contact
force, displacements, and stresses and strains within the laminated plate.

08
thickngss times 4
—~ 064
Z .
=3 thickness doubled
@
<4
o 044
'S
ko]
ol
S Propertias of Table 1
S 029
]
0.0 \
0 100 200
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Fig. 7. Etlect of plate thickness on contact force in example impact problem.
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Fig. 8. Effect of plate thickness on strain behind the impact point in example impact problem.

The equations presented above assume that contact is maintained between the impactor
and the plate. However this can be easily modified for the case where contact is lost during
the impact. The procedure employed is to first calculate the time when the contact force
stops being compressive, and then set the contact foree to zero at this time. The convolution
integral, eqn (1), can then be casily solved by replacing the upper limit of the integral by
the time when contact is lost. This solution will hold until contact is again made. A solution
to the seccond impact can be obtained by using the procedures given above, but using the
conditions at the time of the second impact as initial conditions for this second impact.
This procedure can be continued for subsequent impacts.,

A drawback of the present (analytical) solution to the impact problem is that the
nonlincar contact force displacement relationship must be approximated by a lincarized
relationship. The procedure used at present was to base the linear contact stiffness as well
as the size of the contact arca on values estimated from the static contact loading relations,
at an estimated value of peak foree for the impact problem. An iteration of solution may
be required to obtain an estimate of the peak force. The shape of the contact arca and the
contact pressure distribution were also simplified, being taken as a square area and a
uniform pressure, respectively. These approximations are not significant (within the context
ol plute equations) as long as the contact arca is relatively small.

For problems involving relatively flexible plates, the solution is not particularly sen-
sitive to the numerical value used for the contact stiffness. The lincarized contact relationship
will thus give good answers in this situation. This can casily be checked by varying the
lincar contact stiffness used. I a strong dependence on the value used is observed, then a
nonlinear numerical solution may be required. However, as mentioned previously by Qian
and Swanson (1989), many practical situations involving impact of composite plates do not
depend strongly on the contact stiffness value, Neglecting the contact deformation alto-
gether in the present example problem only changed the computed peak force by 10%.

Perhaps the main contribution of an analytical method is that it provides a benchmark
for numerical solutions, as the nonlincar numerical solutions may be appropriate in order
to include morc realism into the impact problem, for example with respect to material
damuage. more complicated geometries, cte. An example of this type of calibration of a
numerical approach may be seen ina comparison of Figs 4 and 5, where the present solution
is compared with the finite clement solutions of Sun and Chen (1985) and Wu (1986).

As a final point, it may be remarked that it s straightforward to program the present
solution for computation. As described above, the method involves finding the roots of a
polynomial expression in the square of the Laplice transform paramcters s. The response
frequencics during the impact are then simply related to the roots by @ = (—s°)' *. Any
normal root-finding method can be used to find these roots numerically. The procedure
used at present was to first calculate the natural frequencics of the plate, which arc needed
anyway, arrange these natural frequencies in increasing order, and then evaluate the poly-
nomial at intervals between the natural frequencies (between zero and the lowest natural
frequency for the first interval). A change in sign of the polynomial indicates the presence
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of a root: the subinterval containing the root can then be evaluated to determine the precise
value of the root and thus the response frequency. We used the bisection method as a ~*fool-
proof™ brute force technique.

SUMMARY AND CONCLUSIONS

An analytical technique has been presented for impact of laminated composite plates
by a rigid impactor. The solution is based on the usual Fourier series expansion for simply-
supported plates. combined with Laplace transform techniques to solve the impact problem.
The solution gives the impact force and plate displacements. strains and stresses as a
function of time. The contact force-displacement relationship can be included in a linearized
form.
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